
Author: Chris Cohen
chris.cohen@vizola.com

15/06/2004 Page 1 of 11

Building a simple application using BCA

Project: Cash-flow Estimator

Table-of-Contents

Introduction ..2
Synchronising the estimator ...2
Specifying regular credits/debits ...2
Setting up the object properties for web page display..2
Setting up a Default catalogue for listing objects..3
Setting up a menu to access these objects..3
Creating a custom SETUP/CANCEL method for BankDebits ...5
Creating simple reports in the ODE...6
Building flexible interactive reports..6
Building flexible interactive reports..7
An HTML template for the Month-to-View Cash-flow Estimator ...7
Script to control which month’s information to display...8
Script to draw the month-to-view calendar rows and add cash flow information ..9
A stored procedure to return relevant transaction information ... 10
The final output plus further enhancements.. 11
About Vizola’s Business Component Architecture .. 11

Introduction
This application note takes you through the steps of creating a simple cash-flow estimator which generates a month-
to-view report showing flows in and out of a bank account. For this project we want to be able to select the month of
interest up to 6 months ahead and report on expected cash flows during the month.

Note: This is a simplified actual example from an ERP implementation, which leaves out expected cash flows from
invoicing and purchasing sources.

Synchronising the estimator
Every so often we want to be able to synchronise our model with an actual value,
which takes account of any discrepancies between the simple model and reality.
Our estimator will use only the most recent value as a starting point to project
forward.

Using the BCA Object Definition Editor (ODE), we simply create a BankSync
object which simply has two properties (Date, Balance).

Specifying regular credits/debits
Most bank accounts have fixed sums of money going in and out of the account on a
regular basis which might be weekly, fortnightly, monthly or quarterly. These
transactions could be broadly categorised into Wages/Salary (INCOMINGS) and
overheads such as mortgage/rent/utilities/savings etc. as standing orders/direct
debits (OUTGOINGS) which have a start- and end-date, frequency and amount. We
want to be able to easily activate/deactivate each order so we’ll have a status
property. You can see that each bank order may represent a large number of
individual transactions.

Whilst it would be possible to determine which are the relevant ones in the month of interest by parsing through at
report generation time, this is not the best solution. It will be far faster to create individual transaction objects when
we decide to activate the order, then simply query for ones in the month of
interest when generating the report.

Using the ODE we therefore create this very simple BankDebit object with just
three properties (Date, Amount, Category). Note: The ODE will automatically
add another property which represents the MANY end of a ONE-MANY link.

We also create a BankOrder object which has the properties we’ve discussed
plus a couple of other informational items and a special property (BankDebits)
which we setup as a data object link to BankDebit as ONE-MANY.

Setting up the object properties for web page display
We have now created the three object definitions we need to implement the cash-flow estimator. In order to ensure
that BCA knows how to display each of the object’s properties we need to simply click on each one in turn and ensure
that the appropriate data type is selected. For example, selecting CURRENCY right aligns the data defaulted to 0.00
and selecting DATE displays a field with popup calendar.

15/06/2004 Page 2 of 11

Setting up a Default catalogue for listing objects
We also need to specify which properties to show in a listing
row, which is done by creating a ‘Default’ catalogue for the
object. The ODE catalogue editor allows us to simply create
this and select the fields of interest.

Note: A BCA catalogue is analogous to an object-oriented
index, allowing objects to be easily filtered and listed directly
from the database without actually having to instantiate them.

For objects with specific requirements and complex
interactions we can create different catalogues (scripted or
compiled) and even force uniqueness.

Setting up a menu to access these objects
Once we have set up a default catalogue, we can start LISTING, ADDING
and EDITING instances of these objects. But to access them we must first
set up a few menu entry points with the aid of the ODE Site Menu Editor.

This tool allows you to construct a menu system for accessing aspects of
your application. Note: In fact with BCA you can easily setup as many
different sites and menus (including security sections) as you wish, with all
pointed at the same database, which allows for creation of customer
extranets etc.

For the sake of this project we can neatly access all aspects of the cash-
flow estimator through three entry points:

1. The CASHFLOW menu item provides direct access to the report.
2. The BANK ORDERS item provides a listing of all these objects currently configured.
3. The SYNCHRONISE item lists bank synchronisation dates and amounts.

Note that the BCA convention is for
root menu items to appear on the
MainNav top stripe, and their child
items appear in a LocalNav side
pane. The BCA system only displays
lower levels of menu hierarchy as
you drill down into them.

For the purposes of demonstration
we have here very quickly and
easily added a new page object
called _AccTop which merely
displays the text you see here in
the white ‘working area’.

Note: The working area is bordered by the customisable BCA navigation and system areas defined in the site’s
MainPage.htm template and associated images and stylesheets.

Clicking on the CASHFOW menu item will drill down into active BCA pages, discussed below.

15/06/2004 Page 3 of 11

Returning to the site menu editor - fields in the right pane allow you to set properties for each item:

1. CAPTION is self-evident.
2. SECTION controls to which security section this item belongs.

‘Main’ is generally setup for access by the group EVERYONE.
3. TARGET and MODE fields control whether the item appears in the standard window or a popup.
4. DESTINATION and PARAMETERS fields control which PAGE and what parameters should be called.

For this project, we will leave SECTION, TARGET and MODE at their default values, shown here, so the fields we do
need to complete are DESTINATION and PARAMETERS.

We have already added a very simple plain HTML page as an introduction to the cash-flow estimator. For the other
menu items we will use two very common general purpose pages, and an appropriate string of parameters.

MENU ITEM DESTINATION PARAMETERS
Cashflow Report 1,,,CashFlow,,Cash Flow Forecast
Bank Orders CreateDO 0,BankOrder
Synchronise CreateDO 0,BankSync

Note: We could set up a BCA system to use different names for these general purpose pages but the important thing is
that they cause the system to instantiate classes which implement iclsHTMLTool and pass a set of (mostly optional)
input parameters. CreateDO calls the default page handler class (bcaDOTools.HTMLForm) and Report calls the default
report generator class (bcaReps.DoRep). By convention, the input parameters are in the same order as the default
handler (Action, DefID, ObjID, ChildPath, ChildID, ParentNav, Flags), but this is only important when a custom handler
does not implement all action types, whereupon program flow drops through to the default handler.

For the default page handler the first parameter is the
ACTION and the second the DEFID.

ACTION = 0 means list object instances (catalogue list),
and provides an entry point for manipulation of the
objects:

1. An ADD button is placed at the bottom of the
page

2. Each row may be drilled down for editing the
object

Upon drilling down we can see how BCA lays out the page fields for editing. Notice that AMOUNT has been defined as
type CURRENCY so the field has been right aligned, whereas START and END are date type so they have been given a
popup calendar.

Note also that since BankDebits is a one-many object link
the system automatically generates a fieldset container
for a catalogue of linked objects. In fact, since we don’t
really want to see any of this container we can set a
HIDE=1 flag against BankDebits using the ODE.

You can also see the DELETE, OK and CANCEL buttons
added by the editing page builder handler. You will notice
also a fourth button SETUP/CANCEL which we have added
as a custom ‘method’ in order to activate or de-activate
bank orders by creating or deleting their linked
BankDebits objects (see later section for details on how to
do this).

15/06/2004 Page 4 of 11

Creating a custom SETUP/CANCEL method for BankDebits
We would like to do this so we can create and delete BankDebit objects simply by
changing the status of its parent BankOrder.

Well, this time we need to write a bit of code – a simple COM object which implements
an interface defined by iclsMethod in the BCA system. This interface module ensures the
page handler inserts the method buttons when required (according to the optional
configured parameters in the ODE) and provides access to the overall BCA DOManager
object together with submitted NavParams.

By loading the BankOrder object of interest we can check its status and accordingly
create child BankDebits if required, using the other property information. The code below illustrates use of some of
the powerful (unrestricted) methods in the DOManager sub-objects.

Output for iclsMethod uses the ubiquitous HTMLReturn data type, using whose Page member we can ensure stateful
onward navigation for the user, with optional error messages if required.

1

Option Explicit
'method button to setup/cancel bank debits according to bank order
Implements iclsMethod

Private Function iclsMethod_DoMethod(doMan As DOManager, Nav As Navigation, Params As ParamTool) As HTMLReturn
'use end points / frequency to create bank debits

Dim dtStart As Date, dtEnd As Date, dtDebit As Date, dtDebitActual As Date
Dim oBO As DataObj, oBD As DataObj
Dim lLink As Long, lParent As Long
Dim sErr As String
Dim str As New StrConcat
Dim aNavParams() As String

 aNavParams = Split(Nav.Params, ","): lParent = aNavParams(2) 'we know that ObjID is the third parameter

 'load the bankorder and find the children link number assigned by ODE
 Set oBO = doMan.DataObjectManager.Load(lParent): lLink = oBO.ItemInfo("BankDebits").LinkID

 doMan.DataObjectManager.Save DObject:=oBO, SubmitForm:=True 'first submit any changes to the object (from edit fields) and save it

 doMan.Hierarchies.RemoveChildren lLink, lParent 'delete any existing debits

 dtStart = oBO!Start: dtEnd = oBO!End: dtDebit = dtStart 'load up the bank order to get info

 Select Case oBO!Status
 Case "Active", "active"
 Do While dtDebit <= dtEnd 'this loop creates as many bankdebits as required
 dtDebitActual = missWeekend(dtDebit) 'make sure the actual debit date is a weekday
 Set oBD = doMan.DODefManager.CreateObj("BankDebit") 'create a BankDebit, copy the parent props and save
 With oBD: !Date = reverseDate(dtDebitActual): !Amount = oBO!Amount: !Category = oBO!Category: End With
 doMan.DataObjectManager.Save oBD
 doMan.Hierarchies.AddHierItem lLink, lParent, oBD.ObjectID 'object links are separated for rapid retrieval by query
 dtDebit = intervalAddByName(dtDebit, oBO!Frequency, dtEnd, sErr) 'add on the frequency
 Loop

 Case "Cancelled", "cancelled" 'we've already removed the previous children so do nothing

 Case Else: sErr = "Invalid status: Use Active or Cancelled." 'setup an error message if the user types an unknown status

 End Select

 'if err then first alert the error then set edit action again, else return to list
 If sErr <> "" Then str.Add "<script>alert('" & sErr & "');</Script>": aNavParams(0) = 1 Else aNavParams(0) = 0
 str.Add "<script>navigate('" & Nav.Target & "[" & Join(aNavParams, ",") & "]');</Script>"
 iclsMethod_DoMethod.Page = str.Text

End Function

Function reverseDate(dt As Date) As String
 reverseDate = Year(dt) & "/" & Right("00" & Month(dt), 2) & "/" & Right("00" & Day(dt), 2)
End Function

Function missWeekend(ByVal dt As Date) As Date
 Do While Weekday(dt) = 1 Or Weekday(dt) = 7: dt = dt + 1: Loop
 missWeekend = dt
End Function

Function intervalAddByName(dt As Date, interval As String, dEnd As Date, sError As String) As Date
Dim cnt As Integer
 cnt = 1
 Select Case interval
 Case "Monthly", "monthly", "m": interval = "m"
 Case "Weekly", "weekly", "w": interval = "ww"
 Case "Fortnightly", "fortnightly": interval = "ww": cnt = 2
 Case "Quarterly", "quarterly", "q": interval = "q"
 Case Else: interval = "d": dt = dEnd
 sError = "Invalid frequency: Use Weekly, Fortnightly, Monthly or Quarterly."
 End Select
 intervalAddByName = DateAdd(interval, cnt, dt)
End Function
5/06/2004 Page 5 of 11

Creating simple reports in the ODE
The ODE has an in-built HTML Report Editor which
allows you to insert special <VZT:Field> tags into
an HTML template of your design to populate it with
relevant information.

You simply choose the object of interest and then
specify whether you want a summary (catalogue)
report or a detail report on an individual object.

The report editor supports a <VZT:Group> tag which
is used to iterate through either catalogue entries (as
in the Bank Orders Report here), or sub-object
collections (like purchase order lines) if you are
reporting on a single object.

An important option on the context menu is the Tag
Builder Tool which constructs the correct tag syntax
for you when you simply select your tag type and
field. Note that currently tags are named by ordinal
position for catalogue reports.

A Test button allows you to instantly preview report
output without setting up menu access within the
application, which is the final step to prototyping our
new report, as shown below.

15/06/2004 Page 6 of 11

Building flexible interactive reports
In addition to simple FIELD tags, the tag builder allows you to insert GROUP, TITLE, STORE and most importantly
SCRIPT tags. Script tags allow full programmatic control of report building and are vitally important for constructing
interactive reports, such as the month-to-view cash-flow report we are aiming towards.

You can think of the <VZT:Script> block as server-side script with access to local variables from the report context
as well as some important system objects and classes, including:

• A parameters collection from the calling page or entity with important ‘OpenArgs’
• An ADODB connection to the system database
• All ASP objects, including REQUEST object submitted fields
• BCA definition, object and catalog managers
• Various BCA utilities including an efficient string handler and listing tool

An HTML template for the Month-to-View Cash-flow Estimator
The layout for the template is really quite
simple.

We need a select element populated with
six months starting at the current month.

Then we need a table with a row for each
day of the month, and appropriate column
headers and footers.

We will decide on the specific categories we
wish to display in advance, and any other
category transactions will be put within the
OTHER column.

Building both the select element options
and the table body will necessarily be done
in script as there are several variables
which govern the number of rows and
information displayed.

Later, we will run through exactly what is
involved in coding these scripts.

We also need a few styles in order to be able to
the look of the fonts and colours etc.

15/06/2004

<HTML>
 <HEAD>
 <Title><VZT:Title>Cash Flow Forecast</VZT:Title></Title>
 <STYLE>
 .cur{mso-number-format:"\#\,\#\#0\.00";}
 .shade{background-color:inactivecaptiontext;}
 #cfTab tr{cursor:default;}
 </STYLE>
 </HEAD>
 <BODY>
 Month

 <SELECT onchange=setMonth()>

<VZT:Field Type="Script" Name="getOptions"></VZT:Field>
</SELECT>

<table class=colTable id=cfTab width=100% cellpadding=0

cellspacing=0>
 <thead><tr>
 <td>Day of Month

<td>Opening
<td>Invoices
<td>Bank Orders

 <td>Wages
<td>Purchases
<td>Other
<td>Closing

 </thead>
 <VZT:Field Type="Script" Name="getDaysEntries"></VZT:Field>
 </TABLE>
 </BODY>

</HTML>
 choose

 Page 7 of 11

Script to control which month’s information to display
In order to use the select element to control the display we need to implement:

1. client-side script to refresh the page when we change the display month
2. server-side script to display the select element appropriately

The client script gives us an
insight into the way BCA
navigates between pages in a
stateful way.

The NAVIGATE method is
supplied by a supporting
MainPage.js script module which

The first parameter for this meth
separated list of NavParams whic
NavParams allow you to set the n
parameter to pass a date in the m

The main part of the server
script is a function to build a
set of option elements for the
select element.

We check the OpenArgs
parameter to determine
which option is to be selected
and set a global date
parameter to be used by the
function building the report
table body.

Note the use of the MSTR
class to perform efficient
string concatenation.

A sample output of the
getOptions function is shown
below:

<option selected value='2
<option value='2004/7/1'>
<option value='2004/8/1'>
<option value='2004/9/1'>
<option value='2004/10/1'
<option value='2004/11/1'
<option value='2004/12/1'

15/06/2004

<script language="jscript">
 function setMonth(){
 navigate("Report[1,,,CashFlow,,Cash Flow Forecast,," +
window.event.srcElement.value + "]");
 }
</script>
submits a form which is always directed at the same default.asp system page.

od is the active Page target (Report) followed by a square bracketed comma-
h is accessible server-side. In this case the target is a generic report handler whose
ame of the report to call, its title and an OpenArgs parameter. We will use this last
onth of interest.

<VZT:SCRIPT LANGUAGE=”vbscript”>
dim firstOfSelectedMonth 'global variable

function firstOfMonth(dt) 'this function returns the reverse first of month
 firstOfMonth = year(dt) & "/" & month(dt) & "/1"
end function
function mthCaption(dt) 'this function returns select option text
 mthCaption = monthname(month(dt)) & " " & year(dt)
end function
function getOptions(vals,group) 'this function returns select options
 firstOfSelectedMonth = mparams("openargs")

'if there is no date passed in set it to the first of this month
if not isdate(firstOfSelectedMonth) then

firstOfSelectedMonth = firstOfMonth(Date)
 end if
 for i = 0 to 6 'build the options list for 6 months from now
 optMonth = firstOfMonth(dateadd("m",i,Date))
 mstr.add "<option "
 if firstOfSelectedMonth = optMonth then mstr.add "selected "
 mstr.add "value='" & optMonth & "'>"

mstr.add mthCaption(optMonth) & vbnewline
 next
 getOptions = mstr.text: mstr.clear
end function
</VZT:SCRIPT>

004/6/1'>June 2004
July 2004
August 2004
September 2004
>October 2004
>November 2004
>December 2004

 Page 8 of 11

Script to draw the month-to-view calendar rows and add cash flow information
The script to build the table rows is more complex, and requires that we create a stored procedure to source the
required information quickly and efficiently (see a subsequent section to see how we do this). This stored procedure
will return two recordsets, the first simply with a single row of the most recent bank synchronization details and the
second with all the transactions between then and the end of the month of interest. We will return all the rows for the
second recordset into an array using the getRows method as this is most efficient.

We can evaluate the number of days in the month of interest using the native dateserial function with a daypart of 0,
and use the weekday function to decide whether to shade the day as part of the weekend. Prior to stepping through
and creating the days-of-the-month rows, we need to start stepping through the transactions data array until the
beginning of the month to derive an opening balance.

Once into the dayCounter loop we create a colData array to ensure relevant transactions get added to the correct
column, regardless of the order in which column data is returned from the recordset. This technique also allows us to
choose what columns we want to show and bundle other transaction amounts into the OTHER column. We also use a
totalizing colTotal array to provide a totals row under the month table. In the case of opening and closing balance
columns we have chosen to calculate an average for these. Unfortunately we cannot easily use a join method on the
array to provide final string output as we want to format the numbers nicely.

<VZT:SCRIPT LANGUAGE=vbscript>
dim firstOfSelectedMonth 'global variable

function getDaysEntries(vals,group)
dim colTotal(8, colData()
 for i = 0 to 8: colTotal(i) = 0: next'initialise array for column totals
 daysInMonth = Day(DateSerial(Year(firstOfSelectedMonth), Month(firstOfSelectedMonth)+1, 0)) 'get the days count
 set rs = mdoman.connection.execute("usp_FcastPayment_Get '" & firstOfSelectedMonth & "'",,0)
 syncBal = rs("SyncValue"):'get the first sp recordset which has syncvalue
 aTransData = rs.NextRecordset.GetRows'now get the second rs rows with the debit data
 lTransCount = ubound(aTransData,2)
 bal = syncBal: lTransRow = 0'find the months opening balance by adjusting balance since syncdate
 do while lTransRow < lTransCount and (datevalue(aTransData(0,lTransRow)) < datevalue(firstOfSelectedMonth))
 bal = bal + aTransData(2,lTransRow): lTransRow = lTransRow + 1
 loop
 for dayCounter = 1 to daysInMonth
 dayOfWeek = weekday(dateadd("d",dayCounter-1,firstOfSelectedMonth))
 select case dayOfWeek'if weekend then shade the row tag
 case 1,7: mstr.add "<tr class=shade>"
 case else: mstr.add "<tr>"
 end select
 'columns 0:dayOfMonth 1:dayOpen 2:dayInvoices 3:dayBankOrders 4:dayWages 5:dayPurchases 6:dayOther 7:dayClose
 redim colData(7) 'setup /clear an array to hold the column data so its independent of ordering in the recordset
 colData(0) = vbnewline & "<td>" & WeekdayName(dayOfWeek) & " " & dayCounter
 colData(1) = bal: colTotal(1) = colTotal(1) + bal'set the days opening balance
 'iterate through the transaction data for each day
 do while day(aTransData(0,lTransRow)) = dayCounter
 vTrans = aTransData(2,lTransRow): bal = bal + vTrans
 select case aTransData(1,lTransRow) 'this is the category
 case "Sales Invoices": lColumn = 2
 case "Bank Orders": lColumn = 3
 case "Purchase Orders": lColumn = 5
 case "Wages": lColumn = 4
 case else: lColumn = 6
 end select
 colData(lColumn) = colData(lColumn) + vTrans'now add the transaction data to the correct cell

colTotal(lColumn) = colTotal(lColumn) + vTrans
if lTransRow = lTransCount exit do else lTransRow = lTransRow + 1

 loop

 colData(7) = bal: colTotal(7) = colTotal(7) + bal'completed the days transactions so set closing balance
 mstr.add colData(0) 'join the array to produce the row output
 for lColumn = 1 to 7
 if colData(lColumn) <> 0 then
 mstr.add "<td align=right class=cur>": mstr.add formatnumber(colData(lColumn),2)
 else
 mstr.add "<td> "
 end if
 next
 next
 mstr.add vbnewline & "<thead><tr><td>Totals" 'now we add the final totals row
 for lColumn = 1 to 7
 if lColumn = 1 or lColumn = 7 then
 mstr.add "<td align=right class=cur>"
 mstr.add formatnumber(colTotal(lColumn)/daysInMonth,2)
 else
 mstr.add "<td align=right class=cur>"
 mstr.add formatnumber(colTotal(lColumn),2)
 end if
 next
 mstr.add "</thead>"
 getDaysEntries = mstr.text
end function
</VZT:SCRIPT>

15/06/2004 Page 9 of 11

A stored procedure to return relevant transaction information
For the purpose of building our cash-flow estimator, we are interested in returning information on all bank debits (and
credits) which are expected to occur between the most recent BankSync date and the end of the month-of-interest.

The most efficient way to do
this is to create a SQL stored
procedure which has one
parameter passed in, being a
date in the month-of-interest.

CREATE PROCEDURE dbo.usp_FcastPayment_Get

 @startdate smalldatetime = null --this is the first of the month-of-interest
-------we need to get the info from the last bank sync and return all adjustments from then
-------until the end of the month of interest
AS

declare @syncdate smalldatetime
declare @syncvalue money
declare @enddate smalldatetime

-------this gets the last day of the month-of-interest for where clause
-------being this month if nothing is passed in
if @startdate = null select @startdate = cast(getdate() as int)
set @startdate = dateadd(d,-day(@startdate)+1,@startdate)
set @enddate = dateadd(m,1,@startdate)-1

-------this gets the latest banksync information using BCA fns to extract
-------date and money types from the text type catval columns
select top 1 @syncdate = dbo.fn_getcatentrydate(catval,1), @syncvalue =
dbo.fn_getcatentrymoney(catval,2)
from tbl_doCatValue c inner join tbl_doDef d on c.DefID=d.ID
where catname='default' and d.name='banksync'
order by cast(catval as varchar) desc

------this select returns the banksync info in the first recordset
select @syncdate as SyncDate, @syncvalue as SyncValue

------this second select returns the bank debits between @syndate and @enddate
select Expected, Category, Sum(Amount) as Amount
from (
------these are the debits / credits setup as bank orders
select dbo.fn_getcatentrydate(catval,1) as Expected,
dbo.fn_getcatentry(catval,3) as Category, -sum(dbo.fn_getcatentrymoney(catval,2)) as Amount
from tbl_docatvalue where catname='debits' and dbo.fn_getcatentrydate(catval,1) between @syncdate and
@enddate
group by dbo.fn_getcatentrydate(catval,1), dbo.fn_getcatentry(catval,3)
------these are the expected payments from customers from invoicing
union select dbo.fn_getcatentrydate(catval,1), 'Sales Invoices', sum(dbo.fn_getcatentrymoney(catval,2))
from tbl_docatvalue where catname='topay' and dbo.fn_getcatentrydate(catval,1) between @syncdate and
@enddate
group by dbo.fn_getcatentrydate(catval,1)
------these are the payments to be made to suppliers for purchase orders
union select dbo.fn_getcatentrydate(catval,1), 'Purchase Orders', -
sum(dbo.fn_getcatentrymoney(catval,2))
from tbl_docatvalue where catname='payable' and dbo.fn_getcatentrydate(catval,1) between @syncdate and
@enddate
group by dbo.fn_getcatentrydate(catval,1)
) tmp
group by Expected, Category
order by Expected, Category

We are simply interested in
summing the debits/credits on
a daily basis for the period of
interest.

15/06/2004 Page 10 of 11

The final output plus further enhancements
Our final cash-flow estimator output is shown
here. Included also are columns resulting from
expected cash flows from purchases and invoicing
(which is outside the scope of this project).

There are countless other enhancements which
could easily have been incorporated, including:

1. create custom editor for BankOrders
supporting dropdown selects instead of
text fields for STATUS and CATEGORY

2. adding a caption property to the
BankDebits which appears as a tooltip on
mouseover

3. adding a button to export to Excel
4. adding a button to list transaction detail

for the month
5. adding a hyperlink on the dates to popup

a window to synchronise your bank
balance or add further bank orders

6. suppressing balance data when unchanging

About Vizola’s Business Component Architecture
The BCA system consists of:

1. An object-oriented database built on SQL Server
2. Object Definition Editor which enables:

a. Managing object definitions and object instances
b. Creating and managing menu hierarchies
c. Managing form field validation using regular expressions
d. Creating HTML reports for use with BCA catalogues and objects

3. Capable and extensible default object handlers for pages and reports
4. Extensive and growing library of custom object handlers

During the course of constructing this project we have seen something of BCA and how it works. Hopefully it illustrates
to developers and interested parties something of the benefits to be gained by using BCA as a foundation for their own
applications. Licenses are available to use the system, complete with source code. Please contact Chris Cohen for
further information.

15/06/2004 Page 11 of 11

	Introduction
	Synchronising the estimator
	Specifying regular credits/debits
	Setting up the object properties for web page display
	Setting up a Default catalogue for listing objects
	Setting up a menu to access these objects
	Creating a custom SETUP/CANCEL method for BankDebits
	Creating simple reports in the ODE
	Building flexible interactive reports
	An HTML template for the Month-to-View Cash-flow Estimator
	Script to control which month’s information to display
	Script to draw the month-to-view calendar rows and add cash
	A stored procedure to return relevant transaction informatio
	The final output plus further enhancements
	About Vizola’s Business Component Architecture

